Search results

1 – 2 of 2
Article
Publication date: 5 September 2016

Amin Helmzadeh and Shahram M. Kouhsari

The purpose of this paper is to propose an efficient method for detection and modification of erroneous branch parameters in real time power system simulators. The aim of the…

Abstract

Purpose

The purpose of this paper is to propose an efficient method for detection and modification of erroneous branch parameters in real time power system simulators. The aim of the proposed method is to minimize the sum of squared errors (SSE) due to mismatches between simulation results and corresponding field measurements. Assuming that the network configuration is known, a limited number of erroneous branch parameters will be detected and corrected in an optimization procedure.

Design/methodology/approach

Proposing a novel formulation that utilizes network voltages and last modified admittance matrix of the simulation model, suspected branch parameters are identified. These parameters are more likely to be responsible for large values of SSE. Utilizing a Gauss-Newton (GN) optimization method, detected parameters will be modified in order to minimize the value of SSE. Required sensitivities in optimization procedure will be calculated numerically by the real time simulator. In addition, by implementing an efficient orthogonalization method, the more effective parameter will be selected among a set of correlated parameters to avoid singularity problems.

Findings

Unlike state estimation-based methods, the proposed method does not need the mathematical functions of measurements to simulation model parameters. The method can enhance other parameter estimation methods that are based on state estimation. Simulation results demonstrate the high efficiency of the proposed optimization method.

Originality/value

Incorrect branch parameter detection and correction procedures are investigated in real time simulators.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 35 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 January 2016

Mohsen Tajdinian, Shahram Montaser Kouhsari, Kazem Mohseni and Mehdi Zareian Jahromi

Decaying DC component has important effect on extracting the fundamental component phasor. It directly affects the precision of protective relaying algorithms which act based on…

Abstract

Purpose

Decaying DC component has important effect on extracting the fundamental component phasor. It directly affects the precision of protective relaying algorithms which act based on fundamental frequency component. It can be noted that decaying DC component, harmonic components and off-nominal frequency conditions are the major issues which strongly effect phasor estimation. The paper aims to discuss these issues.

Design/methodology/approach

This paper proposes a novel hybrid approach for fundamental phasor estimation in order to remove the decaying DC component using Hilbert Transform and Discrete Fourier Transform.

Findings

The proposed method (PM) converges to the original value in one cycle in presence of harmonic components and off-nominal frequency condition. In addition, proposed algorithm is able to detect the frequency fluctuation. Thus, it is applicable for static and dynamic conditions. An extensive set of simulation results across static and dynamic validations demonstrated that the proposed approach has faster convergence and better precision than the present methods. In addition, during harmonic distortion and also frequency fluctuation, the PM provides a correct and reliable response.

Originality/value

The PM can calculate the DC component exactly from fault current signals and can be used in digital protection algorithms for phasor estimation.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2